Use of Thromboelastography in the Management of the Trauma Patient

Rio Grande Trauma Conference

John A. Aucar, MD, MSHI, FACS, CPE
EmCare Acute Care Surgery
Del Sol Medical Center
Associate Professor, University of Illinois, Urbana-Champaign
Double Whammy....

• Diagnosis and Management of Traumatic Coagulopathy

 • Use of Thromboelastography in the Management of the Trauma Patient

 • Use of Prothrombin Complex Concentrate to Reverse Coagulopathy
Background - History

• Physiology of Traumatic Coagulopathy
• Diagnostic Considerations
 • Clinical
 • Laboratory tests
 • Point of Care tests
• (Therapeutic Strategies)
Coagulation Models

Fig. 1. The blood coagulation system. (TF, tissue factor; PL, anionic phospholipid.)
Damage Control
Damage Control

- Control of mechanical bleeding, limit contamination
- Restore physiology
- Staged definitive repairs

- Coagulopathy
 - Hypothermia
 - Metabolic Acidosis
 - Clotting factor dilution
 - (Circulating Anticoagulants vs. dilution → Mixing studies)
Figuring it out and treating it....

• Traumatic Coagulopathy
 • Diagnosed clinically – setting and seeing the bleeding
 • Diagnosed by laboratory tests
 • PT, PTT, Fibrinogen, FDP, ACT, TEG, TEM, (H & H)

• Treatment strategies
 • Treating the bleeding
 • Treating the shock
 • Treating the tests

• Treatment options
 • PRBC, FFP, Platelets, Cryoprecipitate, PCC, rFVIIa, TXE (Heparin, tPA)(FWB)
What is our tolerance for...

- Anemia?
- Hypothermia?
- Factor Dilution?
- Fibrinolysis?

What is the natural history of TC?
Laboratory Tests – PT, PTT, Fibrinogen, FDP

• Drawn into a reversible anticoagulant
• Transport to lab, run test, report
• Run on plasma at 37 degrees C
• Correlation with bleeding?
Point of Care Tests- ACT, TEG, rTEG, TEM

• Needs incorporation into work flow
• Procedural violations – Result Variance
• Equipment QA
• Run on whole blood at 37 degrees C
• Correlation with bleeding?

Lab tests ↔ POC tests
Point of Care Test

• ACT (1966) Activated Clotting Time
 • Used for Heparin Monitoring; Trauma?

• TEG (1948) Thromboelastography
 • Used for medical coagulation diagnosis; Trauma?

• rTEG Rapid TEG
 • Kaolin activated TEG

• TEM Thromboelastometry (ROTEM)
 • TEG with numbers
Traumatic Coagulopathy

ACT Protocol

• Inclusion Criteria
 • Hypotensive trauma operated STAT (n=8) (7)
 • Expanded to include urgent (n = 32) (27)
 • Excluded major head injury

• Methods
 • Serial ACT (q 15 min intra op)
 • Blood usage, Temp, pH
 • Clinical coagulopathy ---> Damage Control
Traumatic Coagulopathy

Intraoperative ACT

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean ACT +/- SD</th>
<th>Groups</th>
<th>ANOVA</th>
<th>Multiple Range Test</th>
<th>Variance Check †</th>
<th>Kruskall - Wallace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 n= 7</td>
<td>180 +/- 63</td>
<td>1,3</td>
<td>p=0.0002</td>
<td>‡</td>
<td>p=0.0001</td>
<td>p=0.005</td>
</tr>
<tr>
<td>2 (n=21)*</td>
<td>136 +/- 15</td>
<td>1,2,3</td>
<td>p<0.0001</td>
<td>‡</td>
<td>p<0.0001</td>
<td>p=0.001</td>
</tr>
<tr>
<td>3 n= 24</td>
<td>118 +/- 20</td>
<td>1,2</td>
<td>p=0.0028</td>
<td>‡</td>
<td>P<0.0001</td>
<td>p=0.031</td>
</tr>
</tbody>
</table>

* Normal volunteers, International Technidyne Corporation package insert.
† Cochran’s C, Bartlett’s & Hartley’s tests confirmed ANOVA despite large variance.
‡ Significant above 95 % confidence interval

Traumatic Coagulopathy

Intraoperative ACT

Bench Model-Methods
Type Matched PRBC + FFP; POC outcome measures

PRBC

FFP

37 Degree C

Citrated Mixture

Whole Blood Equivalent

iSTAT

2.5 M Calcium Chloride

Recalcified

Whole Blood Equivalent

37 Degree C

ACT-LR

ACT+

iSTAT
Classic vs. Microsample ACT

Thromboelastography/Thromboelastometry
Thromboelastography

- Kinetics of clot development
- Angle
- LY30
- Reaction time, first significant clot formation
- Achievement of certain clot firmness
- Maximum amplitude – maximum strength of clot
- Percent lysis 30 minutes after MA

Characteristic Thromboelastograph Tracings
- Normal
- Thrombocytopenia
- Severe Platelet Dysfunction
- Coagulation Factor Deficiency
- Fibrinolysis
- Hypercoagulable State
TEG Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clotting Time CT (sec)</td>
<td>Time to reach 20 mm amplitude from beginning of test</td>
<td>Speed of fibrin formation; influenced by clotting factors, anti-coagulants</td>
</tr>
<tr>
<td>Clot Formation Time CFT (sec)</td>
<td>Time to reach 20 mm amplitude from the time of 2mm amplitude</td>
<td>Kinetics of clot formation; influenced by platelet level/ function and fibrinogen level/ability to polymerize</td>
</tr>
<tr>
<td>Maximum Clot Firmness, MCF</td>
<td>Maximum amplitude (in mm)</td>
<td>Firmness of clot, i.e., clot quality; influenced by platelets, fibrinogen (concentration and ability to polymerize), Factor XIII, fibrinolysis</td>
</tr>
<tr>
<td>Maximum Lysis, ML (% of MCF)</td>
<td>Percent of clot firmness lost during measurement</td>
<td>Abnormal ML at 30 minutes likely indicates fibrinolysis</td>
</tr>
</tbody>
</table>
ROTEM Variations

<table>
<thead>
<tr>
<th>ASSAY</th>
<th>Activator/ Inhibitor</th>
<th>Information provides</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEM</td>
<td>Contact activation</td>
<td>Fast assessment of clot formation, fibrin polymerisation and fibrinolysis via the intrinsic pathway.</td>
</tr>
<tr>
<td>HEPTEM</td>
<td>Contact activation + heparinase</td>
<td>ROTEM® analysis without heparin influence: Specific detection of heparin (compared to INTEM), assessment of clot formation in heparinised patients.</td>
</tr>
<tr>
<td>EXTEM</td>
<td>Tissue factor activation</td>
<td>Fast assessment of clot formation, fibrin polymerisation and fibrinolysis via the extrinsic pathway.</td>
</tr>
<tr>
<td>FIBTEM</td>
<td>Tissue factor activation and platelet inhibition</td>
<td>ROTEM® analysis without platelets: Qualitative assessment of fibrinogen status.</td>
</tr>
<tr>
<td>APTEM</td>
<td>Tissue factor activation + aprotinin</td>
<td>In-vitro fibrinolysis inhibition: Fast detection of lysis when compared to EXTEM.</td>
</tr>
<tr>
<td>NATEM</td>
<td>Recalcification only = classical TEM (Thromboelastometry)</td>
<td>Very sensitive assessment of the equilibrium of coagulation activation or inhibition.</td>
</tr>
</tbody>
</table>
Validating TEG/TEM

• Define Normal and Standard Deviation
• Compare to standard coagulation tests
• Validate against clinical bleeding
"thrombelastography"[MeSH Terms] 3332
Oldest 1962

"thrombelastography"[MeSH Terms] AND "wounds and injuries"[MeSH Terms] 196 (5.9%)
TEG and ROTEM, side by side

• 184 Trauma patients; 3 hospitals, Denmark, USA, Norway
• Mean ISS 17; Mortality 16.5 %
• Correlation Coefficient (r) =
 • R-time vs. CT 0.24
 • K-time vs. CFT 0.48
 • Alpha angle 0.44
 • MA vs. MCF 0.76 *less than 10% deviation at 1 center
• Concluded that inter-changeability is limited in the trauma setting and validation parameters need to be defined separately

ROTEM to detect TC

• 48 Severe Trauma Victims (39 Battlefield casualties) 51 % TC

• Sensitivity of A5 and A10 against
 1) MCF of < 40
 2) “2/3 rule” Deficient initiation, dynamics, and strength (2 out of 3)
 3) Conventional testing: PT > 1.5 X normal
 4) Normal volunteers (n= 50)

ROTEM to detect TC

• EXTEM at 5 and 10 min compared to MCF < 40 (51% of samples)
 • A5 and A10- sensitivities/specificities of: 0.96/0.58 1.00/0.70

• EXTEM at 5 and 10 min compared to “2/3 rule” (58% o samples)
 • A5 and A10 - sensitivities/specificities of: 0.97/0.68 0.98/0.80

• ROTEM MCF vs. Abnormal PT agreed only 58 %
 • Of remaining 42%, half abnormal by 1 test only

Comparing TEG and rTEG

• Simultaneous TEG and rTEG measurements on 190 trauma patients
 • Strong correlation for overall clot strength and platelet function
 • Moderate correlation in assessing the degree of fibrin cross-linking
 • Poor correlation in evaluating thrombolysis

Correlation of conventional thrombelastography and rapid thrombelastography in trauma.
rTEG to Predict Mortality

- Measured rTEG in ED and correlate to occurrence of massive transfusion (MT) and coagulation related death (MT-D)
 - 80 patients
 - 41% MT
 - 21% MT-D

Fig 1. Algorithm for goal-directed massive transfusion. The transfusion algorithm relies on thrombelastography (TEG) tracing variables to direct blood component therapy. r-TEG, Rapid TEG; ACT, activated clotting time; MA, maximum amplitude; EPL, estimated per cent lysis; FFP, fresh frozen plasma; CRYO, cryoprecipitate; PLT, platelet; ACA, aminocaproate.

Viscoelastic clot strength predicts coagulation-related mortality within 15 minutes.

Table IV. Independent predictors of massive transfusion and coagulation-related death*

<table>
<thead>
<tr>
<th></th>
<th>Model AUC</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massive transfusion (MT)</td>
<td>0.92</td>
<td>0.86–0.97</td>
<td>.026</td>
</tr>
<tr>
<td>ISS</td>
<td></td>
<td></td>
<td>.013</td>
</tr>
<tr>
<td>INR, s</td>
<td></td>
<td></td>
<td>.019</td>
</tr>
<tr>
<td>G, dynes/cm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation-related death (MT + death)</td>
<td>0.93</td>
<td>0.87–0.98</td>
<td>.057</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td>.118</td>
</tr>
<tr>
<td>ISS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td></td>
<td></td>
<td>.027</td>
</tr>
<tr>
<td>G, dynes/cm²</td>
<td></td>
<td></td>
<td>.004</td>
</tr>
</tbody>
</table>

*Variables entered: Age, ISS, SBP, BD, INR, PTT, and G.

AUC ROC, Area under the receiver operating characteristic curve; CI, confidence interval; ISS, injury severity score; INR, international normalized ratio; G, clot strength; SBP, systolic blood pressure.

Viscoelastic clot strength predicts coagulation-related mortality within 15 minutes.
TEG the Test

A
INTTEM
CT: 142 s (121-229) CA\textsubscript{A1}: 56 mm (51-64) CLI\textsubscript{A1}: 98% (95-98)
MCF: 62 mm (54-66) CLI\textsubscript{MCF}: 98% (84-96)
CT: 78 s (47-100)

EXTEM
CT: 52 s (30-81) CA\textsubscript{A1}: 56 mm (47-64) CLI\textsubscript{A1}: 98% (97-98)
MCF: 62 mm (52-66) CLI\textsubscript{MCF}: 97% (83-96)
CT: 92 s (60-115)

FIBTEM
CT: 55 s (39-76) CA\textsubscript{A1}: 13 mm (7-18)
MCF: 16 mm (8-20)
CT: 62 s (44-89) CA\textsubscript{A1}: 54 mm (46-63) CLI\textsubscript{A1}: 98% (97-98)
MCF: 61 mm (51-65) CLI\textsubscript{MCF}: 98% (86-96)
CT: 102 s (66-149) MCF: 61 mm (51-65)
CT: >8027 s (39-76) CA\textsubscript{A1}: 0 mm (7-18)
MCF: 0 mm (8-20)

B
INTTEM
CT: 293 s (121-229) CA\textsubscript{A1}: 0 mm (51-64) CLI\textsubscript{A1}: 5% (95-98)
MCF: 17 mm (54-66) CLI\textsubscript{MCF}: 6% (84-96)
CT: >7875 s (47-100)

EXTEM
CT: 167 s (30-81) CA\textsubscript{A1}: 0 mm (47-64) CLI\textsubscript{A1}: 0% (97-98)
MCF: 13 mm (52-66) CLI\textsubscript{MCF}: 0% (83-96)
CT: >7815 s (60-115)

C
INTTEM
CT: 272 s (121-229) CA\textsubscript{A1}: 33 mm (51-64) CLI\textsubscript{A1}: 98% (95-98)
MCF: 43 mm (54-66) CLI\textsubscript{MCF}: 98% (84-96)
CT: 309 s (47-100)

EXTEM
CT: 122 s (30-81) CA\textsubscript{A1}: 30 mm (47-64) CLI\textsubscript{A1}: 98% (97-98)
MCF: 42 mm (52-66) CLI\textsubscript{MCF}: 97% (83-96)
CT: 396 s (60-115)

FIBTEM
CT: >9274 s (39-76) CA\textsubscript{A1}: 0 mm (7-18)
MCF: 0 mm (8-20)
CT: 149 s (44-89) CA\textsubscript{A1}: 30 mm (46-63) CLI\textsubscript{A1}: 96% (97-98)
MCF: 41 mm (51-65) CLI\textsubscript{MCF}: 98% (86-96)
CT: 395 s (66-149)

D
INTTEM
CT: >7342 s (121-229) CA\textsubscript{A1}: 0 mm (51-64) CLI\textsubscript{A1}: % (97-98)
MCF: 0 mm (54-66) CLI\textsubscript{MCF}: % (83-96)
CT: >7190 s (30-81)

EXTEM
CT: >7190 s (30-81) CA\textsubscript{A1}: 0 mm (47-64) CLI\textsubscript{A1}: % (97-98)
MCF: 0 mm (52-66) CLI\textsubscript{MCF}: % (83-96)
CT: >7150 s (60-115)

FIBTEM
CT: >7092 s (39-76) CA\textsubscript{A1}: 0 mm (7-18)
MCF: 0 mm (8-20)
CT: 699 s (44-89) CA\textsubscript{A1}: 0 mm (46-63) CLI\textsubscript{A1}: % (97-98)
MCF: 0 mm (51-65) CLI\textsubscript{MCF}: % (86-96)
Use of Thromboelastography in the Management of the Trauma Patient

Rio Grande Trauma Conference

John A. Aucar, MD, MSHI, FACS, CPE
EmCare Acute Care Surgery
Del Sol Medical Center
Associate Professor, University of Illinois, Urbana-Champaign